

Medição da pressão diferencial através de lâmina de registo

Controlador compacto com visor digital

Montagem diretamente na conduta principal

Em conformidade com a VDI 6022

Unidades terminais VAV

Solução compacta para baixas velocidades de caudal de ar

Unidades terminais de ar rectangulares para utilização em sistemas de volume ar variáveis a baixas velocidades, mesmo em condições desfavoráveis a montante

- Medição da pressão diferencial na própria lâmina do regulador
- Transmissão da pressão diferencial através do veio da lâmina
- Terminais de ligação com tampa de proteção, não é necessária caixa exterior de junções
- Independente da direção do fluxo de ar, nos modelos com sensor dinâmico na medição da velocidade do ar
- Adequado para velocidades de ar entre 0,8 8 m/s
- Dimensões compactas adequado para montagem em espaços confinados
- Solução plug-and-play juntamente com o sistema de controlo ambiente X-AIRCONTROL
- Elevada precisão de leitura mesmo a baixas velocidades de fluxo de ar
- Independente da orientação de instalação
- Fuga de ar através da lâmina fechada de acordo com a EN 1751, classe 3
- Fuga de ar através do corpo de acordo com a EN 1751, classe C
- Gama de regulação do caudal de ar 1:10

Equipamento e acessórios opcionais

- Atenuador de som TX para reduzir o ruído gerado pelo fluxo de ar
- Bateria de água quente modelo WT para reaquecimento do fluxo de ar

=	
7	•
	ê.

nformação geral	2	Código de encomenda	g
⁼ unção	3	Acessórios	11
Características técnicas	4	Dimensões e peso	13
Seleção rápida	4	Detalhes do produto	15
Prescrição	8	Nomenclatura	17

Informação geral

Aplicação

- Unidades terminais VAV rectangulares para utilização em sistemas de ventilação e ar condicionado (AVAC)
- Para quase todas as funções de controlo, limitação e bloqueio dos caudais de ar tanto na insuflação como na extracão
- Indicado para condições desfavoráveis a montante e para baixas velocidades de ar
- Controlo do caudal de ar através de controlador compacto eletrónico com fonte de alimentação externa (24 VCA/CC)
- Para sistemas de caudal de ar de volume variável ou constante
- Bloqueio por controlo remoto

Características especiais

- Sinal de pressão diferencial elevada a uma pequena abertura da lâmina
- Configuração, ou, programação, e ensaio aerodinâmico feitos em fábrica
- O caudal de ar pode ser medido e ajustado posteriormente.
 Poderá ser necessário uma ferramenta especial dependendo do tipo de controlador selecionado
- Medição da pressão diferencial diretamente através da lâmina – não tem cruzeta extra para esse fim
- Transmissão da pressão diferencial através do veio (oco) da lâmina
- Independente da direção do fluxo do ar se for utilizado um sensor dinâmico
- Adequado para velocidades do ar entre 0,8 e 8 m/s
- Tamanho compacto, adequado para montagem em espaços confinados

Tamanhos nominais

- 200 × 100, 300 × 100
- 200 × 200, 300 × 200, 400 × 200, 500 × 200, 600 × 200

Variantes

- TVE-Q: unidade terminal VAV
- TVE-Q com atenuador de som TX, para reduzir o ruído gerado no próprio regulador

Construção

- Corpo em chapa de aço galvanizado à cor natural
- Opcional: acabamento termolacado, cinza prata (RAL 7001)

Caraterísticas principais

- Regulador completo corpo e controlador pronto a funcionar
- Sistema de medida de pressão diferencial integrado na lâmina do regulador
- Transmissão da pressão diferencial através do veio de acionamento da lâmina
- · Controlador eletrónico montado e parametrizado em fábrica
- Cada regulador é ensaiado num banco de ensaios aerodinâmico especial em fábrica
- Em cada regulador está apensa uma etiqueta com os resultados do ensaio e uma escala de caudais
- Elevada precisão de controlo mesmo nos casos de condições desfavoráveis a montante

Controladores - Opções

- Controlador EASY: unidade compacta composta por controlador com potenciómetros, sensor de pressão diferencial e atuador, sem indicador digital
- Controlador compacto: unidade compacta composta por controlador, sensor de pressão diferencial e atuador, sem indicador digital
- Controlador compacto: com interface Modbus RTU e indicador digital; solução plug-and-play juntamente com o sistema de controlo do ambiente X-AIRCONTROL

Acessórios mecânicos (opcionais)

- Atenuador de som, modelo TX, para reduzir o ruído gerado no próprio regulador
- Bateria de água quente, modelo WT, para reaquecimento do fluxo de ar

Características do corpo

- Corpo rectangular
- Flanges em ambas as extremidades, adequados para ligação direta às condutas de ar
- Indicador visual da posição da lâmina no exterior
- Controlador de fácil acesso e substituição

Materiais e superfícies

Construção standard

- Corpo, lâmina do registo em folha de aço galvanizado
- Eixo em PA6 (H ≤ 200) ou alumínio (H > 200)
- Vedação da lâmina do registo e tampão de vedação em EPDM
- Casquilhos dos rolamentos em PBT ou TPU
- Fixação (parafusos, rebites) em aço galvanizado, alumínio

Revestimento termolacado (P1) - opcional

- Corpo, lâmina do registo galvanizada com revestimento termolacado, RAL 7001, cinza prata
- Eixo em PA6 (H ≤ 200) ou alumínio (H > 200)
- Vedação da lâmina do registo e tampão de vedação em
- Casquilhos dos rolamentos em PBT ou TPU
- Fixação (parafusos, rebites) em aço inoxidável, alumínio

Normas e diretrizes

Cumpre os requisitos de higiene da

- EN 16798, Parte 3
- VDI 6022, Folha 1
- DIN 1946, Parte 4
- Para mais normas e diretrizes, consultar o certificado de higiene

Fuga através do corpo

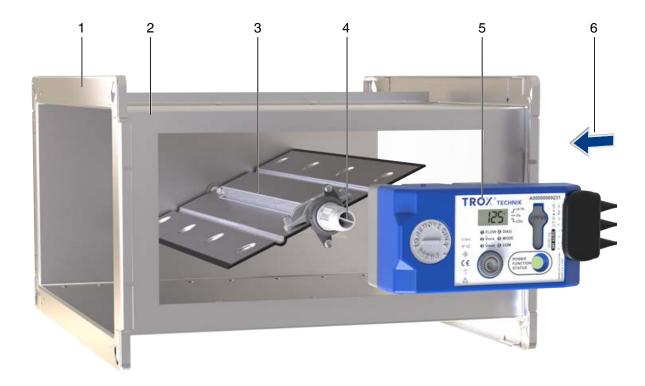
EN 1751, Classe C

Fuga de ar através da lâmina do registo fechada:

- EN 1751, Classe 3
- Cumpre os requisitos gerais da DIN 1946, parte 4, no que diz respeito à fuga admissível de ar através da lâmina do registo fechada

Manutenção

 Sem manutenção, uma vez que a estrutura e os materiais não estão sujeitos a desgaste



Função

Descrição funcional

A lâmina do regulador funciona como um elemento de controlo do caudal de ar e como um sensor de pressão diferencial. A pressão diferencial detetada é transmitida, pelo veio oco – dividido em duas câmaras – de acionamento da lâmina, ao transdutor, dinâmico ou estático, localizado no interior do

controlador, convertido num sinal elétrico e comparado com o valor pretendido do caudal de ar. Os desvios detados são corrigidos por ação do controlador/atuador sobre a posição da câmara. Assim o caudal de ar é mantido constante dentro da gama de pressão diferencial de trabalho (50 a 900 Pa com sensor dinâmico, 50 a 600 Pa com sensor estático).

- 1 Flange para perfis de condutas de ar rectangulares
- 2 Corpo
- 3 Lâmina do registo incluindo o sensor de pressão diferencial
- 4 Eixo com veio oco dupla câmara para transmissão de pressão diferencial
- 5 Controlador de caudal de ar eletrónico
- 6 Direção preferencial do fluxo de ar

Nota: A direção do ar preferencial deve ser observado para controladores com sensor estático. No caso de sensores dinâmicos o sentido do ar é indiferente.

Características técnicas

Dimensões nominais	 200 × 100, 300 × 100 200 × 200, 300 × 200, 400 × 200, 500 × 200, 600 × 200
Gama de caudais de ar	16 - 960 l/s ou 58 - 3456 m³/h
Gama de controlo dos caudais de ar (controlador com sensor de pressão diferencial dinâmica)	aprox. 10 - 100% da taxa do fluxo de volume nominal
Pressão diferencial mínima	até 50 Pa (sem atenuador de som TX)
Pressão diferencial máxima	Controlador com transdutor dinâmico: 900 Pa, Controlador com transdutor estático: 600 Pa
Temperatura de funcionamento	10 – 50 °C

Seleção rápida

As tabelas de dimensionamento rápido fornecem uma boa visão geral das pressões diferenciais mínimas, da precisão dos caudais de ar Δq_ν e dos níveis de pressão sonora expectáveis no ambiente. Os valores intermédios podem ser inferidos por interpolação. Os níveis de potência sonora, para calcular os níveis de pressão sonora, foram medidos no laboratório da TROX de acordo com a DIN EN ISO 5135 - ver "Informações básicas e nomenclaturas". Podem ser obtidos resultados precisos e dados espetrais para todos os componentes de controlo utilizando o nosso programa de design Easy Product Finder. O tamanho nominal é selecionado inicialmente de acordo com os caudais de ar q_{νmin} e q_{νmax}.

Gama de caudais de ar e valores mínimos de pressão diferencial

A pressão diferencial mínima das unidades terminais VAV é um fator importante no dimensionamento das condutas e do ventilador, incluindo o seu controlo da velocidade. Deve ser garantido, para todas as condições de funcionamento e para todas as unidades terminais uma pressão diferencial suficiente a cada regulador (Δp_{stmin}). O(s) ponto(s) de medição para o controlo da velocidade do ventilador deve(m) ser selecionado(s) em conformidade. A gama de caudais de ar das unidades terminais VAV depende do tamanho nominal e do controlador utilizado.

Gama de caudais de ar e valores mínimos de pressão diferencial Controlador com sensor de pressão dinâmica e estática

Controlador: Easy, XB0, XM0, XM0-J6, XS0, XS0-J6

_			Δρ _{stmin} [Pa]			
В	Н	q, [l/s]	q _v [m³/h]	(1)	(2)	Δq _v [±%]
200	100	16	58	1	3	18
200	100	64	230	8	33	8
200	100	112	403	25	101	6
200	100	160	576	50	204	5
300	100	25	87	1	3	18
300	100	96	346	8	33	8
300	100	168	605	24	100	6
300	100	240	864	48	202	5
200	200	33	116	1	2	18
200	200	128	461	6	22	8
200	200	224	806	18	66	6
200	200	320	1152	37	133	5
300	200	48	173	1	2	18
300	200	192	691	6	22	8
300	200	336	1210	17	65	6
300	200	480	1728	35	131	5
400	200	65	231	1	2	18
400	200	256	922	6	22	8
400	200	448	1613	17	65	6
400	200	640	2304	34	130	5
500	200	80	288	1	2	18
500	200	320	1152	6	22	8
500	200	560	2016	16	64	6
500	200	800	2880	33	129	5
600	200	96	346	1	2	18
600	200	384	1382	6	22	8
600	200	672	2419	16	64	6
600	200	960	3456	33	129	5

⁽¹⁾ Regulador sem atenuador de som adicional

⁽²⁾ Regulador com atenuador de som TX

Tabela de dimensionamento rápido quanto ao nível de pressão sonora

As tabelas de dimensionamento rápido incluem valores comuns de isolamento e atenuação sonoros. Se o nível de pressão sonora estiver acima do valor permitido, será necessário considerar um regulador de caudal de ar maior e/ou um atenuador de som (TX) ou revestimento acústico. Para mais informações sobre os dados acústicos, ver Informações Básicas e Nomenclaturas.

Tabela de dimensionamento rápido para o ruído gerado pelo fluxo de ar ao longo da conduta L_{PA} Regulador com ou sem atenuador de som TX

В	Н	q, [l/s]	q _v [m³/h]	150 Pa		500) Pa
В	11	q _ν [ι/s]	q _ν [111 /11]	(1)	(2)	(1)	(2)
200	100	16	58	31	15	40	22
200	100	64	230	40	25	49	32
200	100	112	403	44	29	52	36
200	100	160	576	48	n. a.	54	39
300	100	25	87	25	10	36	18
300	100	96	346	37	23	48	32
300	100	168	605	42	30	52	36
300	100	240	864	46	n. a.	54	39
200	200	33	116	32	19	42	27
200	200	128	461	42	29	52	37
200	200	224	806	44	30	53	39
200	200	320	1152	45	30	54	40
300	200	48	173	35	19	47	30
300	200	192	691	44	27	55	38
300	200	336	1210	45	28	57	39
300	200	480	1728	46	30	58	39
400	200	65	231	31	17	43	27
400	200	256	922	38	24	50	35
400	200	448	1613	39	26	51	37
400	200	640	2304	40	29	52	38
500	200	80	288	33	15	44	26
500	200	320	1152	40	24	51	34
500	200	560	2016	42	26	53	36
500	200	800	2880	43	29	54	38
600	200	96	346	32	17	44	27
600	200	384	1382	38	24	50	34
600	200	672	2419	40	25	51	36
600	200	960	3456	41	29	52	37

⁽¹⁾ Regulador sem atenuador de som adicional

⁽²⁾ Regulador com atenuador de som TX

Tabela de dimensionamento rápido para o ruído radiado através do corpo do regulador $L_{\mbox{\tiny PA}}$

В	Н	q, [l/s]	q _v [m³/h]	150 Pa	500 Pa
Ь	11	۹٫ [۳۵]	۲۰۱۱ ۱۱۱۱ ۱۱۱۱	(*	1)
200	100	16	58	18	26
200	100	64	230	27	35
200	100	112	403	30	39
200	100	160	576	35	41
300	100	24	87	13	24
300	100	96	346	26	36
300	100	168	605	31	41
300	100	240	864	37	45
200	200	32	116	20	29
200	200	128	461	30	39
200	200	224	806	34	43
200	200	320	1152	36	46
300	200	48	173	24	36
300	200	192	691	34	46
300	200	336	1210	38	50
300	200	480	1728	40	52
400	200	64	231	19	31
400	200	256	922	29	41
400	200	448	1613	33	45
400	200	640	2304	35	47
500	200	80	288	20	31
500	200	320	1152	31	42
500	200	560	2016	35	46
500	200	800	2880	38	49
600	200	96	346	19	31
600	200	384	1382	29	41
600	200	672	2419	33	45
600	200	960	3456	36	48

⁽¹⁾ Δp_{st} = Pressão diferencial estática entre a entrada e a saída do regulador

Prescrição

Este texto descreve as características técnicas principais do produto. No programa Easy Product Finder (EPF) disponibilizamos textos adicionais para cada variante.

Texto de prescrição

Reguladores de caudal VAV com formato retangular para sistemas de caudal de ar variável e constante, para insuflação de ar ou extração de ar, em vários tamanhos nominais. Elevada precisão de controlo do regulador do caudal definido, mesmo em caso de condições desfavoráveis a montante. Gama de controlo de, pelo menos, 1:10. Medição e controlo da pressão diferencial através da lâmina do registo. Transmissão de pressão efetiva através de um canal no veio (oco). Fuga de ar com lâmina do registo fechada de acordo com a EN 1751: Classe 3. Fuga de ar através do corpo, de acordo com a EN 1751: Classe C. Unidade pronta a entrar em funcionamento, composta pelas peças mecânicas e controlador eletrónico montado na fábrica. A posição da lâmina de registo pode ser vista a partir do exterior no controlador. A lâmina do registo é ajustada na fábrica na posição aberta, o que permite ensaios da ventilação mesmo com regulador sem alimentação elétrica. Cumpre os requisitos de higiene da EN 16798, Parte 3, da VDI 6022, Folha 1, e da DIN 1964, Parte 4.

Características especiais

- Sinal de pressão diferencial elevada a uma pequena abertura da lâmina
- Configuração, ou, programação, e ensaio aerodinâmico feitos em fábrica
- O caudal de ar pode ser medido e ajustado posteriormente.
 Poderá ser necessário uma ferramenta especial –
 dependendo do tipo de controlador selecionado
- Medição da pressão diferencial diretamente através da lâmina – não tem cruzeta extra para esse fim
- Transmissão da pressão diferencial através do veio (oco) da lâmina
- Independente da direção do fluxo do ar se for utilizado um sensor dinâmico
- Adequado para velocidades do ar entre 0,8 e 8 m/s
- Tamanho compacto, adequado para montagem em espaços confinados

Materiais e superfícies

- Corpo e lâmina do registo em folha de aço galvanizado
- Eixo em PA6, UL94-V0 (H ≤ 200) ou alumínio (H > 200)
- Vedação da lâmina do registo de célula fechada em EPDM
- Rolamentos em plástico

Características principais

 Declaração de conformidade de higiene em conformidade com a VDI 6022, parte 1 (01/2018), ÖNORM H 6020 (03/2015) e ÖNORM H 6021 (08/2016)

- Independente da direção do ar fluxo de ar em ambas as direções
- Adequado para velocidades de fluxo de ar de 0,8 8 m/s
- Não são necessários comprimentos de entrada (mesmo depois da peça em T)
- Cumpre os requisitos de higiene de acordo com a EN 16798
 Parte 3, VDI 6022 Folha 1, DIN 1946 Parte 4
- Ajuste das taxas do fluxo de volume sem dispositivo de ajuste via V_{min.}- e V_{máx.}potenciómetro
- Ligações elétricas com terminais de parafuso, sem necessidade de caixa de ligação adicional
- Dados acústicos determinados de acordo com a ÖNORM EN ISO 5135
- Desvio máximo de controlo de 5% em q_{vmax}, sem troço de conduta reto a montante

Ligação

 Flanges em ambas as extremidades, adequados para ligação direta às condutas de ar

Dados técnicos

 Pressão diferencial mínima: até 50 Pa (sem atenuador de som adicional)

Pressão diferencial máxima

- Controlador com sensor dinâmico: 900 Pa
- Controlador com sensor estático: 600 Pa

Texto da especificação para o controlador

Controlador da série Easy - sinais analógicos

- Tensão de alimentação: 24VCA/CC
- Sinal de ajuste remoto de caudal: 0 10 VCC
- Sinal de caudal de ar real: 0 10 VCC
- Forçar estados de funcionamento FECHAR, ABRIR, q_{vmin} e q_{vmov}
- Potenciómetros com escalas percentuais para definir os caudais de ar q_{vmin} e q_{vmax}
- O sinal referente ao caudal de ar permite uma mais rápida colocação em serviço e o reajuste dos caudais de ar máximo e mínimo pretendidos
- Gama de controlo do caudal de ar: entre 10% a 100% do caudal de ar nominal
- LED indicador para a sinalização das diferentes condições de funcionamento
- Ligações elétricas com terminais de aperto por parafuso.
- Terminais duplos com parafusos no circuito da alimentação, (24 VCA/CC) - facilita as ligações em cadeia de vários reguladores

Código de encomenda

Código do pedido para o regulador de caudal de ar com controlador Easy

1 Tipo

TVE-Q Regulador de caudal de ar rectangular

3 Tamanho nominal [mm]

Especificar tamanho (largura × altura)

Exemplo de pedido: TVE-Q/300×200/Easy

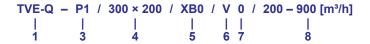
Tamanho nominal [mm]

Controlador

5 Controlador

Easy Controlador de caudal de ar, com sensor dinâmico, interface analógico, ajuste de q_{vmin} e q_{vmax} através de potenciómetros ajustáveis no local

TVE-Q


Largura 300, altura 200

Controlador de caudal de ar, com sensor dinâmico, interface analógico, ajuste de $q_{\text{\tiny vmin}}$ e $q_{\text{\tiny vmax}}$ através de potenciómetros ajustáveis no local

Código do pedido para regulador de caudal de ar com controladores da série VARYCONTROL

1 Tipo

TVE-Q Regulador de caudal de ar rectangular

3 Material

Sem entrada: folha de aço galvanizado

P1 Corpo e lâmina com revestimento termolacado cinza prata, RAL 7001

4 Tamanho nominal [mm]

Especificar tamanho (largura × altura)

5 Controlador

XB0 Controlador do caudal de ar, com sensor dinâmico, interface analógico (sem indicador)

XM0 Controlador do caudal de ar, com sensor dinâmico, interface analógica e Modbus RTU, com indicador digital XM0-J6 Controlador do caudal de ar, com sensor dinâmico, interface Modbus RTU, com indicador digital, tomada RJ12 (para X-AIRCONTROL)

XS0 Controlador caudal de ar, com sensor estático, interface analógica e Modbus RTU, com indicador digital

XS0-J6 Controlador do fluxo de volume, com sensor estático,

interface analógico e Modbus RTU, com indicador digital, tomada RJ12 (para X-AIRCONTROL)

6 Modo de funcionamento

Para os componentes de controlo XB0, XM0, XS0

F Modo de valor constante, um valor de ponto de ajuste (sem contacto externo do interruptor)

V Funcionamento variável (valor de ponto de ajuste padrão do sinal analógico)

Para os componentes de controlo XM0, XM0-J6, XS0, XS0-J6 **M** Interface Modbus RTU, funcionamento variável (valor de ponto de ajuste padrão no registo Modbus)

7 Gama de tensão do sinal

Apenas com o modo de funcionamento F ou V 0 0 - 10 V CC

2 2 - 10 V CC

8 Valores de funcionamento para configuração de fábrica

Caudal de ar [m³/h ou l/s]

q_{vconst.} (com o modo de funcionamento F)

q_{vmin} – q_{vmáx} (com o modo de funcionamento V ou M)

Exemplo de pedido: TVE-Q-P1/500×200/XB0/V0/850-2200[m³/h]

Tipo	TVE-Q
Material	Corpo e lâmina com revestimento termolacado cinza prata, RAL 7001
Tamanho nominal [mm]	Largura 500, altura 200
Controlador	Controlador do caudal de ar, sensor dinâmico, interface analógico
Modo de funcionamento	Funcionamento variável
Gama de tensão do sinal	0 – 10 V CC
Valores de caudal de funcionamento para configuração de fábrica	850 – 2200 [m³/h]

Exemplo de pedido: TVE-Q-P1/300×200/XM0/M/600-1400[m3/h]

Exemple de pedido. TVE-Q-P 1/300^200/XM0/M/600-1400[III /II	J
Tipo	TVE-Q
Material	Corpo e lâmina com revestimento termolacado cinza prata, RAL 7001
Tamanho nominal [mm]	Largura 300, altura 200
Controlador	Controlador do caudal de ar, sensor dinâmico, interface analógico e Modbus RTU, com indicador digital
Modo de funcionamento	Funcionamento variável
Carta de comunicações	Modbus RTU
Valores de caudal de funcionamento para configuração de fábrica	600 – 1400 [m³/h]

Acessórios

Regulador TVE-Q – Versão standard – corpo e lâmina em aço galvanizado

Materiais

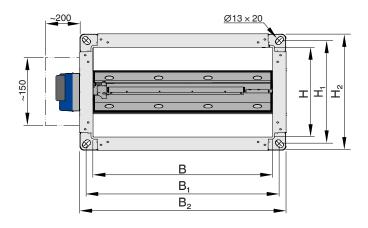
Construção standard

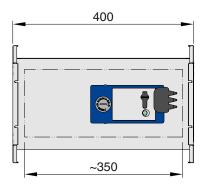
Detalhe do código do pedido	Componente	Material
_	Corpo	Aço galvanizado
_	Lâmina do registo	Aço galvanizado
_	Vedação da lâmina do registo	EPDM, célula fechada
_	Sensor de pressão efetivo	Alumínio
-	Veio (lado do acionamento)	até H ≤ 200: PA6 de H > 200: alumínio
-	Casquilho de rolamento (lado do acionamento)	РВТ
_	Veio (lado sem acionamento)	Aço (aço de corte livre)
-	Casquilho de rolamento (lado sem acionamento)	TPU
_	Tampão de vedação	EPDM, material sólido
_	Vedação	EVA
_	Fixação (parafusos, rebites)	Aço galvanizado, aço inoxidável, alumínio

Regulador TVE-Q-P1 – Corpo e lâmina com revestimento termolacado a RAL 7001

Materiais

Construção com revestimento termolacado

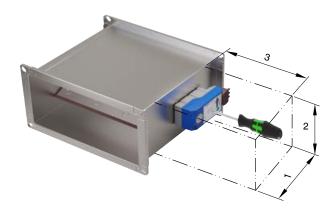

Detalhe do código do pedido	Componente	Material
P1	Corpo	Aço galvanizado com revestimento termolacado, RAL 7001, cinza prata
P1	Lâmina do registo	Aço galvanizado com revestimento termolacado, RAL 7001, cinza prata
P1	Vedação da lâmina do registo	EPDM, célula fechada
P1	Sensor de pressão efetivo	Alumínio
P1	Eixo (lado do acionamento)	até H ≤ 200: PA6 de H > 200: alumínio
P1	Casquilho de rolamento (lado do acionamento)	РВТ
P1	Eixo (lado sem acionamento)	Aço inoxidável
P1	Casquilho de rolamento (lado sem acionamento)	TPU
P1	Tampão de vedação	EPDM, material sólido
P1	Vedação	EVA
P1	Fixação (parafusos, rebites)	Aço inoxidável, alumínio



Dimensões e peso

Regulador TVE-Q

Dimensões e pesos [kg] para TVE-Q


- 3	Binoneces e pecce [kg] para 142 &							
	TN	В	Н	B1	B2	H1	H2	kg
	200 × 100	200	100	230	260	130	160	3,3
	300 × 100	300	100	330	360	130	160	4,1
	300 × 200	300	200	330	360	230	260	5,2
	200 × 200	200	200	230	260	230	230	4,2
	400 × 200	400	200	430	460	230	260	6,1
	500 × 200	500	200	530	560	230	260	7,6
	600 × 200	600	200	630	660	230	260	8,3

Nota: pesos incluindo o controlador eletrónico

Acesso ao controlador, montado num dos lados

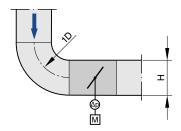
Necessidade de espaço para serviço

Controlador	(1)	(2)	(3)
Controlador: Easy	250	200	300
Controladores compactos: XB0, XM0, XM0-J6, XS0, XS0-J6	250	200	300

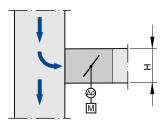
Necessidade de espaço para colocação em funcionamento e manutenção

Para a colocação em funcionamento e manutenção, deve ser deixado espaço suficiente na zona do controlador. Recomendam-se aberturas de inspeção de tamanho suficiente.

Detalhes do produto


Montagem e colocação em funcionamento

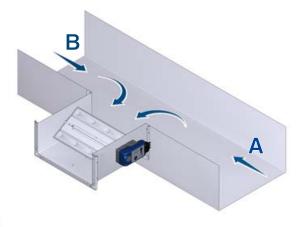
- Quase todas as orientações de montagem
- A EN 1505 deve ser observada ao fazer ligações às condutas de ar, como uma derivação a partir de uma conduta principal
 Condições a montante


A pressão efetiva, que é decisiva para o caudal de ar, é medida, calculada e registada como média na lâmina do registo. Portanto, a precisão do caudal de ar Δq_v é independente do comprimento da conduta reta a montante, mas depende da variante de montagem do regulador relativamente à conduta de derivação, a partir da conduta principal.

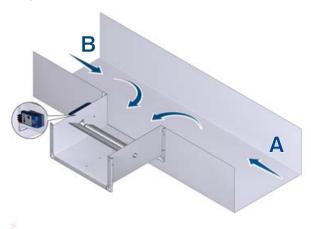
Após uma curva

 Δq_v

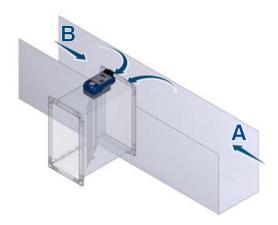
Após uma derivação a partir de uma conduta principal

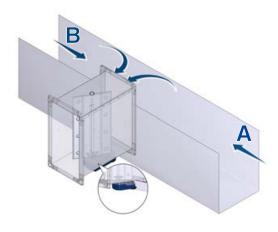

Após uma curva sem troço reto de conduta a montante não tem **Nota:** ver variantes na página seguinte influência significativa na precisão de leitura do caudal de ar

Uma derivação a partir de uma conduta principal causa forte turbulência. A precisão do caudal de ar Δq_{ν} especificado pode ser alcançado para as variantes de montagem 1 e 2 sem uma secção a montante. Para as variantes de montagem 3 e 4, a precisão do caudal de ar Δq_{ν} especificado também pode ser alcançado sem uma secção a montante, se a posição de montagem do regulador for adaptada à direção do ar na conduta principal.



Derivação a partir da conduta principal: variante 1 de montagem


Derivação a partir da conduta principal: variante 2 de montagem


A direção do ar A ou B não têm influência significativa em Δq_v.

A direção do ar A ou B não têm influência significativa em Δq_v.

Derivação a partir da conduta principal: variante 3 de montagem

Derivação a partir da conduta principal: variante 4 de montagem

Para a direção do ar A no conduta principal: Precisão da leitura do caudal de ar Δq, especificado alcançável.

Para a direção do ar B na conduta principal: Para a precisão da leitura do caudal de ar Δq_{ν} especificado deve ser tida em conta uma sobretaxa de 10% no terço superior do caudal de ar. leitura do caudal de ar Δq_ν especificado alcançável.

Para a direção do ar A no conduta principal: Para a precisão da leitura do caudal de ar $\Delta q_{\mbox{\tiny v}}$ especificado deve ser tida em conta uma sobretaxa de 10% no terço superior do caudal de ar.

Para a direção do ar B na conduta principal: Precisão da

Nomenclatura

Dimensões dos reguladores retangulares

B [mm]

Largura da conduta

B, [mm]; [in]

Distância entre os orifícios dos parafusos do flange (horizontal)

B₂ [mm]; [in]

Dimensão total do flange (largura)

H [mm]

Altura da conduta

H₁ [mm]

Distância entre os orifícios dos parafusos do flange (altura)

 H_2 [mm]

Dimensão total do flange (altura)

Dimensões das unidades circulares

ØD [mm]; [in]

Unidades básicas em folha de aço: diâmetro exterior da ligação; unidades básicas em plástico: diâmetro interior da ligação

ØD₁ [mm]; [in]

Diâmetro da circunferência primitiva dos flanges

ØD, [mm]; [in]

Diâmetro exterior dos flanges

L [mm]; [in]

Comprimento do regulador incluindo o tubo spiro às ligações

L₁ [mm]; [in]

Comprimento do corpo ou do revestimento acústico

n []

Número de orifícios para parafusos da flange

T [mm]; [in]

Espessura do flange

Informação geral

m [kg]; [lb]

Peso da unidade, incluindo os controladores eletrónicos

TN [mm]; [in]

Tamanho nominal

f_m [Hz]

Frequência central de cada oitava

 L_{PA} [dB(A)]

Nível de pressão sonora, ponderado A, do ruído gerado pelo fluxo de no regulador CAV, atenuação do natural da sala tomada em consideração

 L_{PA1} [dB(A)]

Nível de pressão sonora, ponderado A, do ruído gerado pelo fluxo de ar no controlador CAV com atenuador de som TX, atenuação natural da sala tomada em consideração

 L_{PA2} [dB(A)]

Nível de pressão sonora, ponderado A, do ruído radiado pelo corpo do regulador CAV, atenuação natural da sala tomada em consideração

 L_{PA3} [dB(A)]

Nível de pressão sonora, ponderado A, do ruído gerado pelo corpo do controlador CAV com revestimento acústico, atenuação do sistema tomada em consideração

Nota sobre dados acústicos: todos os níveis de pressão sonora são baseados num valor de referência de 20 µPa.

q_{vNom} [m3/h]; [l/s]; [CFM]

Caudal de ar nominal (100 %): o valor depende do tipo de regulador, tamanho nominal e controlador. Os valores são publicados na Internet e em folhetos técnicos e disponíveis no programa de apoio ao projeto Easy Product Finder. Valor de referência para calcular percentagens (p. ex., q_{vmax}). Limite superior da gama de ajuste e valor máximo do ponto de ajuste do caudal de ar para o regulador VAV.

q_{Unidade vmin} [m3/h]; [l/s]; [CFM]

Caudal de ar mínimo tecnicamente possível: o valor depende do tipo de regulador, tamanho nominal e do controlador. Os valores estão disponíveis no programa de apoio ao projeto Easy Product Finder. Limite inferior da gama de ajuste e valor mínimo do ponto de ajuste do caudal de ar para o regulador VAV. Valores de ponto de ajuste abaixo de $q_{\text{unidade vmin}}$ (se q_{vmin} for igual a zero) pode resultar em controlo instável ou fecho total da lâmina.

q_{vmax} [m3/h]; [l/s]; [CFM]

Limite superior da gama de funcionamento do regulador VAV que pode ser definido pelo utilizador: q_{vmax} pode ser definido para menos ou igual a q_{vnom} do regulador. No caso de sinalização analógica nos controladores do caudal de ar (que são normalmente utilizados), ao valor máximo do sinal do ponto de ajuste (10 V) é atribuído o valor máximo definido (q_{vmax} (ver característica).

q_{vmin} [m3/h]; [l/s]; [CFM]

Limite inferior da gama de funcionamento do regulador VAV que pode ser definido pelo utilizador: q_{vmin} deve ser definido num valor inferior ou igual a q_{vmax} na unidade terminal. q_{vmin} não deve ser inferior ao $q_{unidade\ vmin}$ o controlo pode tornar-se instável ou a lâmina do registo pode fechar completamente. q_{vmin} pode ser igual a zero. No caso dos controladores analógicos, ao valor mínimo do sinal do ponto de ajuste (0 ou 2 V) é atribuído o valor mínimo definido (q_{vmin} (ver característica).

q_v [m3/h]; [l/s]; [CFM] Caudal de ar

Δ_{αν} [%]

PD-04/2023 - DE/pt

Precisão da leitura do caudal de ar em relação ao ponto de ajuste (tolerância)

 Δp_{st} [Pa]; [inWg]

Pressão diferencial estática

Δ_{pst min} [Pa]; [inWg]

Pressão diferencial mínima estática: a pressão diferencial mínima estática é igual à perda de pressão no regulador VAV quando a lâmina do registo está aberta, causada pela resistência ao fluxo de ar. Se a pressão diferencial no regulador VAV for demasiado baixa, o caudal de ar do ponto de ajuste pode não ser alcançado, nem mesmo quando a lâmina do registo estiver totalmente aberta. Fator importante é o dimensionamento das condutas e do ventilador, incluindo o seu controlo da velocidade. Deve ser garantida uma pressão diferencial estática suficiente para todas as condições de funcionamento e para todos os reguladores, e o ponto ou pontos de medição da pressão para controlo da velocidade do ventilador devem ser selecionados de forma adequada.

Dimensões [mm]; [in]

Todas as dimensões são dadas em milímetros [mm] exceto indicação em contrário.

Unidade básica

Unidade para controlar um caudal de ar sem um controlador elétrico. Os principais componentes incluem o corpo com

sensor(es) para medir a pressão efetiva e a lâmina do registo para restringir o caudal de ar. A unidade básica é também referida como uma unidade terminal VAV. Características distintivas importantes: geometria ou forma da unidade, material e tipos de ligação, características acústicas (p. ex., revestimento acústico opcional ou atenuador de som integrado), gama do caudal de ar.

Controlador eletrónico

Unidade(s) eletrónica(s) montada(s) na unidade básica para controlar o caudal de ar, a pressão na conduta ou a pressão do espaço, ajustando a posição da lâmina do regulador. A unidade eletrónica consiste basicamente num controlador com sensor de pressão efetiva (integral ou externo) e um atuador integrado (controladores Easy e Compact) ou atuador externo (controlador Universal ou LABCONTROL). Características distintivas importantes: sensor: sensor dinâmico para ar limpo ou sensor estático para ar contaminado. Atuador: atuador padrão de funcionamento lento, atuador de retorno por mola para posição de segurança ou atuador de funcionamento rápido. Tecnologia de interface: interface analógica ou carta de comunicação digital para a transmissão de sinais e dados.

Unidade terminal VAV

Consiste numa unidade básica com um controlador eletrónico acoplado.

PD-04/2023 - DE/pt